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Universitat Politècnica de Catalunya
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Abstract: In this paper, a review of the simultaneous diagonalization of n-tuples of matrices for its applications in
sciences is presented. For example, in quantum mechanics, position and momentum operators do not have a shared
base that can represent the states of the system because they not commute, which is why switching operators form a
key element of quantum physics since they define quantities that are compatible, that is, defined simultaneously.
We are going to study this kind of family of linear operators using geometric constructions such as the principal
bundles and associating them with a cohomology class measuring the deviation of the local product structure from
theglobalproductstructure.
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1 Introduction

Let M be the manifold of m-tuples of n-order real
matrices T = (X1, . . . , Xm)

The simultaneous diagonalization of two real
symmetric matrices has long been of interest and
largely studied, (see [5], for example).

In this paper, a review about the simultaneous di-
agonalization of n-tuples of matrices for its applica-
tions in sciences in particular for the case of traceless
matrices, [7], [8]. For example they appear founding
when we must give the instanton solution of Yang-
Mills field presented in an octonion form, and it can
be represented by triples of traceless matrices, [1], [6],
[13]. Another application of simultaneous diagonal-
ization is found when studying, for example, thermal
transmissivity, whose study is different depending on
whether the interaction matrices diagonalize simulta-
neously, [10].

In the space of n-square real matrices, it is well
known that the subset of diagonalizable matrices is
generic in the, then any no diagonalizable matrix can
be diagonalized by a small perturbation of its entries.
This property cannot be generalized to the case of si-
multaneous diagonalization of an m-tuple of n-order
real square matrices. For that the simultaneous diag-
onalization is studied under different points of view
as for example analysing the spectra of families of m-
tuples of matrices, [8] by means Arnold tools, [3].

When someone is interested in distinguishing one
subset from another within a differentiable variety, a
good tool may be to try to identify it from the ze-

ros of bundle sections built on the variety, and, then,
the characteristic classes allow to identify its obstruc-
tions. In this particular setup the interest is about the
set of the m-tuples of simultaneously diagonalizable
real matrices, some results about families of simulat-
neously diagonalization can be found in [7], [8].

Principal bundles [9], have significant applica-
tions in different mathematical areas as topology and
differential geometry, in special bundles given by a
Lie group action. They have also applications in
physics, concretely they form part of the basic frame-
work of gauge theories, [14], and quantum theory, [4].

The cohomology is a topological invariant of a
smooth variety, and it is an algebraic tool, which is a
certain algebraic structure extracted from a differen-
tiable variety, that allows us to distinguish whether or
not two varieties are homeomorphic, [12].

In this work we are going to talk about invariant
polynomials, which are a classic tool that allows a de-
tailed study of the characteristic classes for bundles.
A study for the case of the set of the square complex
matrices can be found in [2].

2 Preliminaries

Basic properties

Definition 1. Let T = (X1, . . . , Xm), T ′ =
(Y1, . . . , Ym) be two m-tuples of matrices. Then, T
is simultaneous similar to T ′ if and only if there exists
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P ∈ G = Gl(n;R) such that

T ′ = (Y1, . . . , Ym)
= (PX1P

−1, . . . , PXmP
−1)

= PTP−1.
(1)

The coefficients of characteristic polynomial
det(λI− (X1 +xX2 + . . .+xm−1Xm)) are invariant
under this equivalence relation

We are interested on the simultaneous diagonaliz-
able m-tuples.

Definition 2. The m-tuples of matrices T =
(X1, . . . , Xm) is simultaneously diagonalizable if and
only if there exist an equivalent m-tuple formed by di-
agonal matrices.

We will denote by D be the manifold of m-tuples
of n-order simultaneously diagonalizable real matri-
ces.

Necessary conditions for simultaneous diagonal-
izable m-tuples are, (see [7]):

Proposition 3. Let T = (X1, . . . , Xm) be a simulta-
neous diagonalizable m-tuple. Then all matrices Xi

must be diagonalizable. (The reciprocal is false).

Proposition 4. Let T = (X1, . . . , Xm) be a simulta-
neous diagonalizable m-tuple. Then XiXj = XjXi.

Theorem 5. Let T = (X1, . . . , Xm) be a m-tuple of
commuting n-order square matrices and suppose that
the matrixXi for some i is diagonalizable with simple
eigenvalues (λj 6= λk for all j 6= k, k, j = 1, . . . n).
Then T is a m-tuple of simultaneously diagonalizable
matrices

Theorem 6. Let T = (X1, . . . , Xm) be a m-tuple of
commuting and diagonalizable n-order square matri-
ces. Then, they diagonalize simultaneously.

Theorem 7. Let T = (X1, . . . , Xm) be a m-tuple of
n-order square matrices and suppose that all matri-
ces Xi are diagonalizable, then a necessary and suf-
ficient condition for simultaneous diagonalization is
there exist a basis {v1, . . . , vn} of v ∈ Cn such that

vj ∈ ∩mi=1Ker (Xi − λji ),

where λij ∈ SpecXi = {λi1, . . . , λin}.
Taking P =

(
vt1 . . . vtn

)−1 we have

PXiP
−1 = Di.

(See [7], for more information).

2.1 Fiber Bundles
Following Husmoller [9], fiber bundle is a structure
(E,B, π, F ), where E, B, and F are topological
spaces called the total space, base space of the bun-
dle, and the fiber respectively, and π : E → B is
a continuous surjection called the bundle projection,
satisfying the following local triviality condition: for
every x ∈ E, there is an open neighborhood U ⊂ B
of π(x) (called a trivializing neighborhood) such that
there is a homeomorphism ϕ : π−1(U) → U × F in
such a way that the following diagram should com-
mute:

π−1(U)

π

��

ϕ // U × F
π1

yy
U

where π1 : U × F → U is the natural projection and
ϕ : π−1(U) → U × F is a homeomorphism. The set
of all {(Ui, ϕi)} is called a local trivialization of the
bundle.

Thus for any p ∈ B, π−1({p}) is homeomorphic
to F and is called the fiber over p.

A trivial example of bundle is the one given by

(B × F, π,B, F )

where π : B × F −→ B is the projection on the first
factor, in this case the fibers are {p}×F for all p ∈ B.

A fiber bundle (E′, B′, π′, F ′), is a subbundle of
(E,B, π, F ) provided E′ is a subspace of E, B′ is a
subspace of B, and π′ is the restriction of π to E′,
π′ = πE′ : E′ −→ B′,

In the special case where the fiber is a group G,
the fiber bundle is called principal bundle. In this case
any fiber π−1(b) is a space isomorphic to G. More
specifically, G acts freely without fixed point on the
fibers.

In the case where E, B and F are smooth man-
ifolds and all the functions above are required to be
smooth maps, the fiber bundle is called a smooth fiber
bundle.

It is possible to induce bu
Let π : E −→ B be a fiber bundle with fiber F

and let f : B′ −→ B be a continuous map. We can
deduce a fiber bundle overE′ in the following manner

f∗E = {(b′, e) ∈ B′ × E | f(b′) = π(e)} ⊆ B′ × E

and equip it with the subspace topology and the pro-
jection map π′ : f∗E −→ B′ defined as the projection
onto the first factor:

π′(b′, e) = b′
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Defining f ′ so that the following diagram is com-
mutative

f∗E

π′

��

f ′ // E

π

� �
B′

f // B

we have that (f∗E,B′, π′) is a fiber bundle so that the
fibers on b ∈ B correspond to the fibers on f−1(b).

We consider an important concept on fiber bun-
dles that is the of cross section notion.

Definition 8. A cross section of a bundle (E,B, π, F )
is a map s : B −→ E such that πs = IB . In other
words, a cross section is a map s : B −→ E such that
s(b) ∈ π−l(b), the fibre over b, for each b ∈ B.

Let (E′, B, π′, F ′) be a subbundle of
(E,B, π, F ), and let s be a cross section of
(E,B, π, F ). Then s is a cross section of
(E′, B, π′, F ′) if and only if s(b) ∈ E′ for each
b ∈ B.

One the main goals studying cross sections is to
account for the existence or non-existence of global
sections. When there are some problem to construct a
global section, one says that there are an obstruction.

3 Bundle of n-tuples of matrices
given by a Lie group action

Let M be the smooth manifold of m-tuples of n-order
real matrices T = (X1, . . . , Xm).

The equivalence relation defined in 1, can be seen
as the action of a Lie group G over M in the following
manner:

Let us consider the following map

α : G×M −→M
(P, T ) −→ PTP−1 = (PX1P

−1, . . . , PXmP
−1)

that verifies

i) If I ∈ G is the identity element, then α(I, T ) =
T for all T ∈M.

ii) If P1 and P2 are in G , then α(P1, α(P2, T )) =
α(P1P2, T ) for all T ∈M.

α(P1, α(P2, T )) = α(P1, P2TP
−1
2 ) =

P1P2TP
−1
2 P−11 = (P1P2)T (P1P2)

−1 =
α(P1P2, T )

So, the map α defines an action of G over M.
Analogously we can define an action of G over

G×M in the following manner:

β : G× (G×M) −→ G×M
(Q, (P, T )) −→ (PQ−1, α(Q−1, T )).

Proposition 9. The G-action β is free, transitive and
its orbits are diffeomorphic to G

Proof. Suppose that β(Q, (P, T )) = (P, T ), so

β(Q, (P, T )) = (PQ−1, α(Q−1, T ))
= (PQ−1, Q−1TQ)
= (P, T )

then, PQ−1 = P and Q−1TQ = T and Q = I .

β(R, β(Q, (P, T )) = β(R, (PQ−1, α(Q,T ))
= β(R, (PQ−1, QTQ−1))
= (PQ−1R−1, α(R,QTQ−1))
= (PQ−1R−1, RQTQ−1R−1)
= (P (RQ)−1, α(RQ,T ))
= β(RQ, (P, T )),

O(P, T ) = {(P , T ) = β(Q, (P, T )), ∀Q ∈ G}

ϕ : G −→ O(P, T )

Q −→ (P , T ) = β(Q, (P, T ))

ϕ is clearly a diffeomorphism:
If ϕ(Q) = ϕ(Q), then PQ = PQ consequently

Q = Q
And, for (P , T ) ∈ O(P, T ), there exists Q ∈ G

with (P , T ) = (PQ−1, QTQ−1), so ϕ(Q) = (P , T ).

Proposition 10. The set M is identified as the set of
orbits class G×M/β.

,

Proof. We define f as

G×M/β −→M
(P, T ) ◦G −→ T ′

where T ′ is in such a way that there exist Q ∈ G such
that β(Q, (P, T )) = (I, T ′)

1) It suffices to takeQ = P to obtain T ′ = P−1TP

2) f is well-defined because of unicity of T ′:

Let (I, T ′) ∼ (I, T ′′), then, there exist Q such
that

β(Q, (I, T ′)) = (IQ−1, α(Q−1, T ′)) = (I, T ′′)

So, IQ−1 = I and Q−1 = I = Q and
IQ−1α(Q−1, T ′) = α(I, T ′) = T ′.
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3) f is bijective:

If f((I, T ′) ◦ G = f((I, T ′′) ◦ G, then T ′ =
T ′′ and f((I, T ′) ◦ G = f((I, T ′′) ◦ G, so f is
injective

And, clearly, for all T ∈M, f((I, T ) ◦ G) = T
and f is surjective.

Proposition 11. The G-action preserves the fibers
FT = α−1(T ) of α : G×M −→M.

Proof. Let (P, T ) ∈ α−1(T ), then α(Q, (P, T )) =
(PQ−1, QTQ−1) = PQ−1QTQ−1QP−1 =
PTP−1 = T , then (PQ−1, QTQ−1) ∈ α−1(T ).

From propositions 9 and 11 we can deduce the
following result.

Proposition 12. (G×M,M, α,G) is a principal fiber
bundle.

Clearly, we observe that FT is diffeomorphic to
G:

ψ : FT −→ G

(Q,T ) −→ Q

If ψ(Q,T ) = (Q, Q̄), then Q = Q and
QTQ−1 = QT̄Q

−1
= QT̄Q−1, so T = T̄ the ψ

is injective.
On the other hand, for all Q ∈ G, there exists

(Q,Q−1TQ) ∈ FT such that ψ(Q,Q−1TQ) = T ,
the ψ is surjective.

3.1 Orbit space of a free, proper G-action
principal bundle

We ask if (M, π,M/G) determines a principal G-
bundle.

For ensure that it is sufficient that the action of
G on M to be free (this is obviously necessary) and
proper

Remember that a group action α : G ×M −→
M is called free if, there exist T ∈ M such that
α(P, T ) = T implies P = I .

In our particular setup the condition is written as
PXiP

−1 = Xi, for i = 1, . . . ,m, for some T =
(X1, . . . , Xm)

A function f : X −→ Y between two topological
spaces is proper if the preimage of every compact set
in Y is compact in X .

3.2 Subbundle of n-tuples of simultaneously
diagonalizable matrices

Let T ∈ M be an n-tuple of simultaneous diagonal-
izable matrices, following definition 2 there exist Q
such that α(Q,T ) = D = (D1, . . . , Dn) with Di di-
agonal.

Proposition 13. Let T ∈M be an n-tuple of simulta-
neous diagonalizable matrices. Then, all T ∈ O(T )
is simultaneous diagonalizable.

Proof. T = Q1TQ
−1
1 = Q1Q

−1DQQ−11 =

Q2DQ
−1
2

Corollary 14. FD ⊂ G×D

So, defining

α1 : G×D −→ D
(Q,D) −→ α(Q,D)

we have that

Proposition 15. (G × D,M, α1,G) is a principal
subbundle of (G×M,M, α,G).

4 Restriction of group structure
Let C be the manifold ofm-tuples of distinct points of
Rn:

C = {(x1, . . . , xm) ∈ Rn × . . .m × Rn |
xi 6= xj , ∀i 6= j}.

The group of permutations Sn acts over C re-
ordering in the same manner the elements of each xi.

γ : Sn × C −→ C
(σ, (x1, . . . xm)) −→ (σ(x1), . . . , σ(xm))

Example 1 Suppose n = 3 and m = 2 and σ =(
1 2 3
3 1 2

)
. Then

γ(σ, ((λ11, λ
2
1, λ

3
1), (λ

1
2, λ

2
2, λ

3
2)) =

((λ31, λ
1
1, λ

2
1), (λ

3
2, λ

1
2, λ

2
2))

The set C can be identified with the set of m-
tuples of diagonal matrices with distinct n-tuples of
eigenvectors in the following manner:

ψ : C −→ D ⊂M
(x1, . . . , xm) −→ (diag x1, . . . , diag xm)
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where diag xi =

x
1
i

. . .
xni

, for 1 ≤ i ≤ m.

We will denote by CD = ψ(C) this set of n-tuples of
diagonal matrices.

The natural representation of a permutation in a
matrix form permit us to conclude that the map ψ pre-
serves the equivalence relation. So, we have the fol-
lowing commutative diagram.

C

πS

��

ψ

/ /

D

πG

� �

C/Sn
ϕ̃

/ /

D/G

Let X = {((x1, . . . , xm), (P, T )) ∈ C×(G×D) |
ψ(x1, . . . , xm) = α1(P, T )}

The subgroup Sn acts over X in the following
manner

ᾱ : Sn × X −→ X
(σ,X ) −→ Y

where

X = (((x1, . . . , xm), (P, T )))
Y = ((σ(x1), . . . , σ(xm)), (PP−1σ , PσTP

−1
σ )

and Pσ is the permutation matrix associated to σ.
From this action we can induce a Sn-bundle over

C
X

||

πC

��

//

G×D

α1

��

X/Sn
g

//

C
ψ

/ /

D

where g(((x1, . . . , xm), (P, T ))Sn) = (x1, . . . , xm)
and πC((x1, . . . , xm), (P, T )) = (x1, . . . , xm)

and

X

zz

πC

��

//

G×D

α1

��

X/Sn

$$

g

//

C

πGn

��

ψ

//

D

πG

��

C/Gn
ϕ̃

/ /

D/G

5 Characteristic classes
Characteristic classes are global invariants that mea-
sure the deviation of the local product structure from
a global product structure.

The theory of characteristic classes generalizes
the idea of obstructions to construct cross sections of
fiber bundles.

Definition 16. Let G be a topological group and
p : E −→ X be a G-principal bundle. Let h∗ be
a cohomology theory on topological spaces. A char-
acteristic class is an element

x(p) := h∗(fp)(x) ∈ h∗(X)

where x ∈ h∗(BG).

5.1 Invariant polynomials
Consider the m-tuple of matrices T =
(X1, . . . , Xm) = ((X1

ij , . . . , (X
m
ij ) ∈ M, we

will denote by P(X) a polynomial of m · n2 vari-
ables, these will be considered as homogeneous
polynomials, that is, it is formed by monomials of the
same degree, and that the degree of this monomial
would be the degree of the polynomial P(X).

Definition 17. Let T ∈ M, a polynomial P(T ), it is
called invariant if and only if P(T ) = P(PAP−1)
for all P ∈ GL(n;R).

Every polynomial determines a function P :
M −→ R, this function is only determined by said
polynomial.

Given them-tuple of matrices T , we can associate
the following polynomial:

σ(t) =

m∏
j=1

det(I + tXj)

This polynomial is invariant:

Proof.

σ(PTP−1) =
∏m
j=1 det(I + tPXjP

−1) =

(detP )m(detP−1)m
∏m
j=1 det(I + tXj) = σ(T )

Polynomial σ(T ) can be written in the following
manner

σ(T ) =
m∏
j=1

σi(T ) =
m∏
j=1

(
Σn
i=0σ

j
i (Xj)t

i
)

with σ0(T ) =
∏m
j=1 detXj .

Proposition 18. Each polynomial σi(T ) is an invari-
ant polynomial.

Proof. It suffices to note that σji (Xj) is invariant.
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Let be now T ∈ D, taking into account the invari-
ance of the characteristic polynomial we have that

det(I + tXj) =
∏n
k=1(1 + tλjk) =∑nm

i=0 σi(λ
1
1, . . . , λ

1
n, . . . , λ

m
1 , . . . , λ

m
n )ti

Polynomials σi(λ
1
1, . . . , λ

1
n, . . . , λ

m
1 , . . . , λ

m
n

are called elementary symmetric polynomials
in the variables λ11, . . . , λ

m
n ). These polyno-

mials are invariant for product of permutations
(s1(λ

1
1, . . . , λ

1
n), . . . , sm(λm1 , . . . , λ

m
n )).

Now let us consider P(T ) be an invariant poly-
nomial where Xj are n-matrices with elements xjik in
Ω2(M) the space of 2-differential forms in M, and
since the outer product of forming of even order is
commutative, then the polynomial P(T ) in the vari-
ables xjik, belongs to in Ω2nm(M) defining P(FO) a
characteristic classe where FO is curvature shape of
the variety.

6 Conclusion
In this paper, a review of the simultaneous diagonal-
ization of n-tuples of matrices for its applications in
sciences has been presented. This kind of family of
linear operators has been analyzed using geometric
constructions such as the principal bundles and asso-
ciating them with a cohomology class defined from in-
variant polynomials that permit measure the deviation
of the local product structure from the global product
structure.
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